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1. INTRODUCTION

In the study of nonlinear acoustic propagation through an inhomogeneous fluid
such as seawater, it is helpful to have explicit relations for the acoustic properties
of the fluid as a function of temperature, pressure, and composition. For both fresh
water and seawater, several empirical relations give the sound speed ¢ and the density
p as functions of temperature, pressure, and, in the case of seawater, salinity S.
We are, however, unaware of any similar relations for the coefficient of nonlinearity
3. Endo (1} has tabulated 3 for seawater over a broad range of temperatures and
pressures for salinities of 23, 30, 35, and 40 parts per thousand (ppt). For computer
implementations of nonlinear propagation through seawater, however, relations with
explicit temperature, pressure, and salinity dependence are preferable over tables of
values. Endo’s tabular values were useful in checking our calculations.

In this work three relations for 8 are developed: one for fresh water as a function
of temperature and pressure, one for seawater with a salinity of 35 ppt as a function of
temperature and pressure, and one for seawater as a function of temperature, pressure,
and salinity. Also developed is a similar set of relations for the term A = 3/(pc®)!/2.

The reason for developing separate relations for A is that it arises as an important
variable in nonlinear geometrical acoustics (2,3]. Under the assumptions of nonlinear
geometrical acoustics, the equation governing the propagation of a progressive finite-
amplitude acoustic wave in an inhomogeneous fluid may be converted to the equation
governing the propagation of a similar plane wave in a homogeneous fluid. The
conversions required are the following:

‘4 1/2 ¢ -1/2
p(f> _re , (1.1)
Ao PoCo

P A AN
T= | —|— dt’ 1.2
! lo A\O (.‘4()) ( )

P

where p is the acoustic pressure. T and P are. respectively. the equivalent plane wave
propagation distance and pressure. A is the ray tube area. and € is the ray path length.
The subscript o indicates conditions at the source point. Equation (1.2) makes clear
why an explicit relation for \ as a function of temperature, pressure. and salinity is

helpful.




2. OVERVIEW OF PROCEDURE

The coefficient of nonlinearity is defined as follows: 3 = B/2A+1, where A and B
are the first and second coefficients of the Taylor series expansion of the total pressure
P in terms of the relative density change. (In fresh water at room temperature and
atmospheric pressure, 3 has a value of approximately 3.5.) Rudnick {4] has shown
that B/A may be expressed in terms of quantities that are easily related to physical
data. Use of the expression for B/A as shown in the paper by Beyer [5] gives

dc caT [ Oc

8 ”c<ap>T+ Cr (a:r),frl ! (2.1)
where the subscripts indicate constant conditions, and T, «, and Cp are, respectively,
the absolute temperature, the coefficient of thermal expansion, and the specific heat at
constant pressure. Note that the first and second terms in Eq. (2.1) contain different
partial derivatives of the sound speed ¢( P, T') evaluated at constant composition. The
term that contains (de/0P)r is hereinafter referred to as “term 1", whereas the term
that contains (Jc/O0T)p is hereinafter referred to as “term 2”. Rudnick noted that,
while all parts make a significant contribution to 8, term 1 is numerically larger than
term 2 in all common fluids.

[n our evaluation of 3, published empirical relations were used as much as possible.
When a derivative of an acoustical property was required, the derivative was obtained
by differentiating the published empirical relation analytically. then evaluating the
result numerically.

To the best of our knowledge. there is only one set of empirical relations for the
acoustical properties of fresh water that is valid over a wide range of temperatures
(0 100°C") and pressures (I 1000 bars absolute). The relations used for the sound
speed and density of fresh water are from. respectively, Chen and Millero [6] and
Chen et al. [7]. The estimates of the coefficient of thermal expansion were obtained

(_i/_’) . For "y on the other hand,

nsing p from Chen et al [7] in the expression =1 (2% ,

N
we used a polvnomial fit to o fresh water ¢p data set [8].

The situation is shightiv different for scawater: at least two published empivical
refations that are valid over a wide range of temperatures (0 10°C) and pressures
(1 800 bars absolute) exist for hoth the sonnd speed and the density. For the sonnd
speed the choice is between the velation developed by Lovett [9] and that developed
by Chen and Millero [10]. For the density the choice is between the expressions

3




developed by Gebhart and Mollendorf [11] and those from Chen and Millero [12].
The choice for the coefficient of thermal expansion is somewhat dependent on the

choice made for the density. The choice is either the evaluation of —% (g%)PS using

p from Gebhart and Mollendorf [11] or the explicit relation for a given by Chen and
Millero {12]. Our estimate of the specific heat at constant pressure in seawater Cp was
obtained by summing the estimate of Cp at one atmosphere, which was calculated
using a relation from Millero et al. [13], with the contribution from the isothermal

integration of [14]
1{, Oa
- - —_— . 2.
T/p(a+(6T))dP (2.2)

The estimates of a and p for Eq. (2.2) were obtained from the appropriate aforemen-
tioned references.




3. UNCERTAINTY IN ESTIMATES OF g IN SEAWATER

To help decide which empirical relations to use for ¢, p, and a in seawater and,
more importantly, to estimate the uncertainty in the calculation of 3, we numerically
implemented all of the aforementioned empirical relations. The absolute difference in
A due to using two different empirical relations was calculated for one property at a
time. The difference in 8 caused by terms 1 and 2 was calculated separately to see
which term in 3 is more sensitive.

Term 1, the term in B that contains (Jc/dP)r, was found to be the largest source
of uncertainty. Estimates of the uncertainty were obtained by calculating term 1 using
Lovett’s relation for ¢ [9] while holding all other relations constant. (For p and a, the
previously referenced Chen and Millero relations were used.) This result was then
subtracted from a calculation of term 1 obtained using Chen and Millero’s relation
for ¢ [10]. The difference was calculated over a realistic range of temperatures and
pressures, that is, a range of temperatures and pressures that might be found in an
ocean: a temperature range of —4-40° for pressures of 1 and 100 bars absolute, but
a temperature range of only —4-10° for pressures of 200, 300, ..., 800 bars absolute.
Shown in Fig. 3.1 is a plot of the difference in term 1 for salinities of 30 and 40 ppt.
(Solid lines are for salinity of 30 ppt, dashed for 40 ppt.) For these salinities, the
difference is always less than 0.1, typically 0.05. For a salinity of 35 ppt (not shown),
the absolute difference is always less than 0.05 and typically less than 0.025. For
contrast, Fig. 3.2 shows a plot of the corresponding difference in term 2, which was
calculated in an identical fashion. The magnitude of these differences is much smaller,
typically less than 0.0025.

The uncertainities in 3 that stem from the different empirical relations for p and a
were examined in the same manner as those for ¢. Both terms | and 2 were evaluated
twice, once using the density relation from Gebhart and Mollendorf [11] and once
using Chen and Millero’s relation [12]. Because a is closely related to p, it was varied
simultaneously. (In all cases, the relation used for ¢ was that of Chen and Millero
(10].) Plots of the differences generated by terms 1 and 2 are shown. respectively,
i Figs. 3.3 and 3.4, The largest differences in 7 that result are in term 2, and the
differences are always less than 0.01.

Finally. a check on the pressure correction term i C'p. Eq. (2.2), was made at
zero salimity. Between 1 and 1000 bar, the pressure increment in Cp given by Eq. (2.2)
deviated by around 10% from the values in Ref 8. Nevertheless, the corresponding
uncertainity in 4. through term 2, is only 1 part in 10*.

.,,")
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Rather than embark on an investigation of the origin of the above cited differences,
we simply chose to use the relations from Chen, Millero, and their co-workers over
those of other workers. QOur reasoning was uniformity of approach: Chen, Millero,
and their co-workers have developed empirical relations not only for ¢, but also for
p, a, and Cp. Thus, for seawater, the relations in Refs. 10 and 12 were used for ¢
and p. Estimates of a were obtained using the explicit relation for « in seawater
from Ref. 12. When using our polynomial expressions to calculate 3, however, one
must always bear in mind that the differences cited above are, generally speaking,
the accuracy limits in our results.

-1




4. RESULTS

4.1 PLOTS OF ¢, p, 3, AND A

Plots of ¢, p, B, and A for fresh water are shown in Figs. 4.1-4.4 and for seawater
in Figs. 4.5-4.8. For fresh water, the acoustic properties are plotted as functions of
temperature for the absolute pressures of 1, 100, 200, 300, ..., 1000 bars. Because
the fresh water Cp relation is valid up to only 90°C, our relations for # and A in fresh
water must be used with caution above 90°C. The curves are therefore dashed in this
region. In the case of seawater, Figs. 4.5-4.8, the salinity is held constant at 35 ppt.
The acoustic properties are plotted as functions of temperature for absolute pressures
of 1, 100, 200, 300, ..., 800 bars. Because the accuracy of the relations for ¢ and p
in seawater is uncertain below 0°C, the values for ¢ and p below 0°C are dashed lines
in this region. Similarly, our derived relations for 3 and A in seawater must be used
with caution below 0°C, and they too are dashed lines in this region.

Some discussion of the plots is in order. The plots of the sound speed and density
for both fresh water and seawater are as expected: the density decreases with rising
temperature, but increases with rising pressure, whereas the sound speed increases
with pressure and, up to around 70-80°, increases with temperature also. The plots of
the coefficient of nonlinearity reveal a more complex temperature and pressure depen-
dence. In seawater, 3 increases with pressure for the temperature range considered.
However, in fresh water, the sign of the pressure derivative of 3 is temperature de-
pendent. Below ahout 60°C, 3 increases monotonically with pressure, whereas above
that temperature, 3 initially decreases with rising pressure. For both fresh water and
scawater, the pressure effect on 3 tends to decrease with rising temperature. The
variation in 3 near 0°C is about 25%, whereas at higher temperatures the variation
decreases to about 5%. In contrast with 3, the pressure effect on A increases with
temperature for both fresh water and scawater. Near 0°C, the variation is about 5%,
but by 40°C' the variation has increased to about 25%, and (in fresh water) by 90°C
the variation has increased to about 40%. Aside from a deviation at low pressure
and temperature, the temperature and pressure dependences of A for both scawater
and fresh water are generally opposite those of the sound speed e. This is reasonable
given that ¢*/2 appears in the denominator of A.

A comparison of the isobar plots of ;3 for fresh water and seawater (IMig. 1.3 with
Fig. 1.7) casts some doubt on the validity of our extrapolation of the underlying

expressions for the acoustic properties below 0°C. Note that, in our fresh water 3

9
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results, the 8 curves diverge rapidly as they approach the freezing point, whereas in
our seawater 3 results, the § curves do not exhibit a similar divergence below 0°C.
The reason may be our unjustified extrapolation of the underlying expressions for c,
p, a, and Cp in seawater. Although these relations are not stated as being accurate
below 0°C, they are the best available. Because we believe that having a expression
for B with an uncertain accuracy below 0°C is preferable over no expression at all,
we extrapolated the underlying expressions to develop our relation for 8.

4.2 POLYNOMIAL EXPRESSIONS FOR § AND A

Our polynomial expressions for # and A are now presented. The order of our poly-
nomial fit was chosen to be similar to that used in the empirical fit to the dominant
underlying acoustic property, the sound speed ¢. The sound speed relation given by
Chen and Millero [7] is fifth order in temperature, third order in pressure, and second
order in salinity. The order of the salinity terms was, however, reduced from second
to first order because the sound speed relation given by Chen and Millero [7] is valid
for a broader range of salinities than is required (5-40 ppt rather than our 30-40 ppt).
The resulting fit of the polynomials to the original data is more than adequate. The
quality of the fits of the polynomials to the original data was assessed through direct
comparison, and the comparison was performed over the claimed ranges of tempera-
tures, pressures, and salinities. The difference between the original data and the fit
1s always far less than the previously discussed uncertainty in the overall calculation.

Our polynomial expressions for 3 were obtained as follows. For seawater, Eq. (2.1)
was evaluated over the following range: temperature —4 to 40°C, pressure 1-800 bars
absolute, and salinity 30-40 ppt. The resulting data points were then fitted to a
polynomial expression that is fifth order in temperature, third order in pressure, and
linear in salinity. The polynomial expression is

B =30 BinlS - 35) PPT™ (1.1)

lom.n

where the salinity S is in ppt, the temperature T is in °C', and the pressure P is bars

U The coeflicients B, are listed in

gauge, that is, relative to 1 atm = 1.01325 bar.
Table 4.1. The maximum absolute error in the fit is 0.0015, aud the typical error is
about half that. (Check value: For a salinity of 32.5 ppt, a pressure of 100 bar gauge,

and a temperature of 15°C, 3 is 3.672556.)

The actual salinity of the occan water column is frequently unknown. In its place,
people often assume a salinity of 35 ppt because this salinity is so common in the

“I'his is the convention used by most authors, including Chen, Millero, and their co-workers, for
presenting empirical fits to seawater and fresh water property data.
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TABLE 4.1
Coefficients in polynomial expression for 3

e — S0 — O e Wi —m O ode Wi — O U Wi — o3

—_—
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T — = = I R G R R R I e R S - S S I R — R Y =) L
NN — — —m D C O W R URNNNRNN———— —~0000 0 O3

F

BY Bimn B>
+3.122127 +3.44166 +3.44223
+0.0262763 +0.0176224 +0.0176264
—0.000439164 —0.000478735 —0.00047893

+0.00000520032
—-3.07095 x 108
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—0.000051128
+7.40662 x 1077
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+4.51141 x 1072
—2.91431 x 1071

+0.0000129976
—1.85398 x 107
+3.36832 x 10710
+0.00104125
—~0.0000457645
+5.84691 x 1077
+5.16276 x 107°
—3.84942 x 10711
—1.69183 x 107
+1.69021 x 1078
—3.37325 x 10710
—3.82096 x 1072
+4.52996 x 10~
—6.58116 x 107!
+6.60716 x 1072
—1.63621 x 107'*
+0.0083:3572
—0.000232107
+0.000001075:36
—0.00001 15765
FT.2387 % 1077
+1.0736 < 1078
$3.2689 x 107"
416156 - 107"

N B PR I

+0.0000130006
—1.85429 x 1077
+3.37367 x 10°1°
+0.0010417
—0.0000457763
+5.85248 x 1077
+5.14004 x 107°
—3.82208 x 10~
—1.69416 x 10~
+1.69053 x 10°8
—3.37744 x 10710
—3.79902 x 10~'?
+4.49897 x 10~
—6.57756 x 10~
X
X

X

+6.60637 x 1071*
—~1.63501 x 10713




world’s oceans. For these reasons, a less complicated relation for 8 for the salinity of
35 ppt was also developed,

¥ =35 B3 P"T" . (4.2)

Valid over the same range of temperatures and pressures, its coefficients are denoted
B3> and are listed in Table 4.1. The maximum absolute error in the fit is 0.0001.

(Check value: For a pressure of 98.98675 bar gauge and a temperature of 15°C, %
is 3.683292.)

For fresh water, Eq. (2.1) was evaluated over the temperature range 0-100°C
and the pressure range 1-1000 bars absolute. A polynomial fit of the same order in
temperature and pressure as above was then obtained,

=5 B2 . P"T" . (4.3)

The coefficients B are also listed in Table 4.1, and the maximum absolute error of
the fit is 0.0005. (Check value: For a pressure of 98.98675 bar gauge and a temperature
of 15°C, 3° is 3.508381.)

Polynomial fits for A = 3/(pc®)'/? that are valid over the same ranges of tem-
peratures and pressures for seawater with salinities of 30-40 ppt, seawater with a
salinity of 35 ppt, and fresh water were developed as above. The relations are shown
in Egs. (4.4)-(4.6), and the coefficients, which are denoted, respectively, Limn, Limn,
and L% . are listed in Table 4.3:

mn?

A= (2 L,mn(5—35)’P'"Tn) UL (1.4)
lomn

A.’SS — (Z Ll) P™] n) > 10~9 SS/Zm—lkg—l/Z . (13)

A° = (Z L?,mP’"T‘) x 107° ss/zn]_'kg‘”2 . (1.6)

The maximum absolute errors in these fits are, respectively, 0.0001 x 107, 0.0001 x
1079, and 0.0015 x 1072 (Check values: For a salinity of 32.5 ppt, a pressure of
100 bar gauge, and a temperature of 15°C, A is 1.270685 x 107°. For a pressure
of 98.98675 bar gauge and a temperature of 15°C, A* is 1.267513 x 107 and A is
1.309151 x 1079))
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TABLE 4.2

Coefficients in polynomial expression for A.

— e e e e e = -~ 0 0000000000000 OO~

SN — — — O O O W W WININNINK —————0 000 0 oS

N o— O N — O W~ O W = O U R W = OS

—
L]

N — O -

L(v)nn Ll""‘ [Tfnsn
+1.340649 +1.34255 +1.34282
—0.00123676 —0.00369707 —0.00370087
—-0.0000219506 —0.0000454961 —0.0000454702
+7.51912 x 1077 | +0.00000411388 | +0.0000041155

—2.82344 x 107°
—5.22167 x 10712
+0.000197704
—0.0000256345
+4.70095 x 107
—4.83161 x 10~°
+1.90758 x 1071
—2.69563 x 1077
+1.46666 x 1078
—1.99597 x 10~1°
+1.59563 x 10712
—-5.86015 x 1071°
+4.01117 x 1071
~1.60177 x 10712
+8.41646 x 1071°

—7.30211 x 1078
+2.49154 x 10710
—2.88818 x 1077
—0.0000191962
+4.28444 x 107
—4.12041 x 10~°
+4.36867 x 10~
—1.43851 x 1077
+1.65626 x 10~8
—3.94804 x 1071°
+2.14739 x 1012
—1.49805 x 10714
+2.48433 x 10~
—2.5426 x 10712
+4.69605 x 10~
—0.000374879
—0.0000614364
+4.68875 x 1077
—0.00000518082
+1.53554 x 1077
+9.56226 x 10~1°
+2.92378 x 107°
+2.13857 x 101
~3.87438 x 10712

—7.30791 x 1078
+2.49717 x 1071°
—4.62069 x 10~7
—0.0000191921

+4.28422 x 1077
—4.1215 x 107°

+4.37169 x 1071
—1.43841 x 107
+1.65666 x 1078
—3.95058 x 10~ '°
+2.15271 x 1072
—1.50419 x 10~
+2.48674 x 10~
—2.54489 x 10712
+4.70247 x 107"




4.3 DISCREPANCY WITH THE TABULATED VALUES OF ENDO (1]

A small discrepancy exists between our results and those of Endo {1]. The magni-
tude of the difference in terms of 3 is at most 0.15 at high temperature and pressure.
The results for high pressure, low temperature as well as those for low pressure, high
temperature appear to agree well. Thus a cross term appears to be the source of the
problem. However, despite numerous tests and repeated checking, the source of the
discrepancy could not “e traced. The checks included evaluating the sound speed
derivatives, Eq. (2.1), numerically for comparison with the values obtained via ana-
Iytical differentiation. The agreement was within 1 ppt for term 1, and even less for
term 2.

The discrepancy is particularly unsettling, as both our and Endo’s underlying
expressions for ¢, p, and a are the same. However, the discrepancy is small, of the
same order as the uncertainty in 3 caused by using the different expressions for ¢, p,
and a.
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5. SUMMARY

In this work three polynomial relations for 3 are developed: one for fresh water
as a function of temperature and pressure, one for seawater with a salinity of 35 ppt
as a function of temperature and pressure, and one for seawater as a function of
temperature, pressure, and salinity. Also developed are a similar set of relations for
the term A = B/(pc®)!/2. Plots of the sound speed c, the density p, as well as 8 and
A for both fresh water and seawater with a salinity of 35 ppt are presented for a wide
range of temperatures and pressures. Although the precision of the polynomial fits
to the underlying data is quite good (typically better than 1 ppt), the use of different
underlying property data leads to uncertainities in 3 of about +3%. Due to a lack of
comparison information, a similar estimate of the uncertainty is not available for 3
in fresh water.
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